Optimal Test Selection for Prediction Uncertainty Reduction
نویسندگان
چکیده
منابع مشابه
the test for adverse selection in life insurance market: the case of mellat insurance company
انتخاب نامساعد یکی از مشکلات اساسی در صنعت بیمه است. که ابتدا در سال 1960، توسط روتشیلد واستیگلیتز مورد بحث ومطالعه قرار گرفت ازآن موقع تاکنون بسیاری از پژوهشگران مدل های مختلفی را برای تجزیه و تحلیل تقاضا برای صنعت بیمه عمر که تماما ناشی از عدم قطعیت در این صنعت میباشد انجام داده اند .وهدف از آن پیدا کردن شرایطی است که تحت آن شرایط انتخاب یا کنار گذاشتن یک بیمه گزار به نفع و یا زیان شرکت بیمه ...
15 صفحه اولIC Performance Prediction for Test Cost Reduction
Ð This paper describes a methodology for building models predicting manufactured integrated circuit performances as a function of inline and wafer electrical test measurements. We show how these predictions can be used to predict the performance of an industrial microprocessor, and reduce the average number of speed bins that must be tested by 45%.
متن کاملTest time reduction by optimal test sequencing
Testing complex manufacturing systems, like ASML lithographic machines (ASML 2005), can take up to 45% of the total development time of a system. This test time can be reduced by choosing wisely which test cases must be performed in which sequence, without making investments in test cases or the system. With the test sequencing method, developed by (Boumen 2005, 2006), it is possible to make th...
متن کاملOptimal Wavelength Selection in Ultraviolet Spectroscopy for the Estimation of Toxin Reduction Ratio during Hemodialysis
Introduction The concentration of substances, including urea, creatinine, and uric acid, can be used as an index to measure toxic uremic solutes in the blood during dialysis and interdialytic intervals. The on-line monitoring of toxin concentration allows for the clearance measurement of some low-molecular-weight solutes at any time during hemodialysis.The aim of this study was to determine the...
متن کاملOptimal Model List Selection for Prediction
We use a predictive optimality criterion to search for optimal model lists. This criterion admits the usual variance bias interpretation. It also permits computations allowing empirical optimization over certain restricted classes of model lists. Our results confirm the intuition that predictive error as function of model list size typically has a V shape: The predictive error is often large fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Verification, Validation and Uncertainty Quantification
سال: 2016
ISSN: 2377-2158,2377-2166
DOI: 10.1115/1.4035204